Influence of the substrate temperature

Distance: 27 mm., flow rate: 1.17 ml/h, time: 60 min.

Temperature too low (① et ②): dense film but cracked due to stresses during the drying step (solvent excess)

Appropriated temperature - ③

Equilibrium between quantity of arriving solvent and evaporation

Temperature too high (④): arriving droplets too dried to spread leading to porous film (not enough solvent)

Influence of the solution flow rate

Influence of nozzle to substrate distance

Temperature: 450°C, flow rate: 1.17 ml/h, time: 60 min.

Distance too short : arriving dropets too wet and films cracks (① et ②).

Appropriated distance - ③

A larger distance favors the evaporation of solvent in excess no cracks

Correlation temperature – working distance

Correlation of process parameters

Flow rate (Q) - Distance (D) - Temperature (T)

R. NEAGU et al., Surface and Coatings Technology, 200 [24] (2006) 6815-6820.

Microstructural characterization - SEM

Dense thin films of cubic and tetragonal zirconia

 $\begin{array}{c} \textbf{Solution} \\ (Zr(acac)_4 \cdot 10H_2O \ + \ 10\%m\ YCl_3 \cdot 6H_2O) \\ in \ BC \ - \ ethanol\ 1:1 \end{array}$

375°C, 57 mm, 0.5 ml/h 60 min.

thickness : $\approx 300 \text{ nm}$

on composite NiO-8YSZ

Crystallization of films and grain growth

Temperature dependence of 8YSZ thin film In situ Raman spectroscopy

Neagu R., Perednis D., Princivalle A., Djurado E., Surface and Coatings Technology 200 [24] (2006) 6815-6820 Neagu R., Perednis D., Princivalle A., Djurado E., Solid State Ionics 177 [19-25] (2006) 1981-1984 Neagu R., Djurado E., Ortega L., Pagnier T., Solid State Ionics 177 [17-18] (2006) 1443-1449

Conclusions ...

- Investigation of ESD process parameters on the microstructure of doped zirconia films (substrate temperature, nozzle to substrate distance, flow rate) — Optimal ESD conditions for the synthesis of dense and nanostructured thin films of YSZ and TZP (300 nm in thickness).
- Determination of single phased tetragonal and cubic films and crystallization temperature (500-650°C) by *in situ* temperature dependence XRD and Raman spectroscopy

1 - Sonochemistry for the synthesis of controlled nanostructured oxide powders: zirconia and ceria-based oxides

- » Ultrasonic Spray Pyrolysis (USP) process DOE
- » ZrO₂ based powders: morphology and phase transitions
- » Physico-chemical properties of CGO powders and sintering behavior
- » USP advantages and disadvantages

2 – Electrostatic Spray Deposition for the design of dense and porous films

- » Electrostatic Spray Deposition (ESD) process
- » Optimization study of the ESD process to coat thin dense zirconia-based films
- » Fundamental study of the formation of the ESD layer
- » Advanced oxygen electrodes for SOC:
 - LSCF, CCO, LSM, LSM/YSZ, LPNO
- » ESD advantages and disadvantages

FUNDAMENTAL STUDY OF THE FORMATION OF THE ESD LAYER

R. NEAGU et al., Chemistry of Materials, 17 [5] (2005) pp. 902-910

Growth of a dense layer

- In the ideal case (droplets of the same size, no particles)
- Coating only by spreading evaporation precipitation.

A perfect coating is expected

equilibrium impacting solvent/evaporating solvent

Growth of a porous layer

- For a multi-jet atomisation cone, (mixture of droplets and particles) the coating is consisted of 2 layers:
 - A dense sub-layer, formed by spreading- evaporation precipitation of large droplets,
 - A porous layer above, due to preferential landing of particles <u>and</u> droplets.

Preferential landing

SEM observations:

400°C

Roughness of the coating increases versus time. The porous film is formed due to the impacting particles (drying droplets during the transport)

1 - Sonochemistry for the synthesis of controlled nanostructured oxide powders: zirconia and ceria-based oxides

- » Ultrasonic Spray Pyrolysis (USP) process DOE
- » ZrO₂ based powders: morphology and phase transitions
- » Physico-chemical properties of CGO powders and sintering behavior
- » USP advantages and disadvantages

2 – Electrostatic Spray Deposition for the design of dense and porous films

- » Electrostatic Spray Deposition (ESD) process
- » Optimization study of the ESD process to coat thin dense zirconia-based films
- » Fundamental study of the formation of the ESD layer
- » Advanced oxygen electrodes for SOC:

LSCF, CCO, LSM, LSM/YSZ, LPNO

» ESD advantages and disadvantages

Advanced oxygen electrodes for SOC

Porous LSCF6428 films

$Ce_{0.9}Gd_{0.1}O_{2-\delta}$ substrates

- Isostatic pressing (Praxair powders) •
- Sintering @ 1450 °C / 4h in air
- $\varnothing = 18 \text{ mm} /_{\sim} 1 \text{ mm}$ thick
- $\rho_r \ge 95 \%$

$La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ solution

- $La(NO_3)_2$, $SrCl_2$, $Co(NO_3)_2$ and $Fe(NO_3)_2$ mixed in
 - EtOH:BC (1:2 vol.%)
 - EtOH:H₂O (1:5 vol.%)
- Concentration = 0.02 mol/L

ESD variable parameters: 275 °C \leq T \leq 450 °C 15 mm \leq d \leq 58 mm 0.34 mL/h \leq Q \leq 1.59 mL/h

Droplet size

Influence of deposition parameters, Q

T = 300 °C
d = 30 mm

Flow rate $\int droplet \propto \left(\frac{\rho \varepsilon_0 Q^3}{\gamma \sigma}\right)^{\frac{1}{6}}$

0.34 mL/h

1.5 mL/h

Influence of deposition parameters, d

T = 300 °C **Q** = 1.5 mL/h

Influence of deposition parameters, T

Heat Treatment

Microstructure vs. Electrochemical Performance

Dense	Σμm	1-4 μm	Parameters T/°C Q/mL/h d/mm Film thickness (µm)	300 1.59 25 - 35 1 - 4
Columnar		3-8 μm	Parameters T/°C Q/mL/h d/mm Film thickness (µm)	300 - 350 1.5 - 1.59 15 - 20 3 - 8
Coral	5 μm	6 - 25 μm	Parameters T/°C Q/mL/h d/mm Film thickness (µm)	375 - 450 1.02 - 1.59 35 - 58 6 - 25

Antes Sile 17

Influence of microstructure on LSCF electrodes

Influence of microstructure in LSCF columnar electrodes

D. Marinha et al, Chem. Mater. 23 [24] (2011) 5340-5348

CCL by SP, LEPMI

Moving ESD

800 °C/2h, air

10-15 μ m columnar width ASR_{pol} = 0.06 Ω cm² at 600°C, the best in the literature

O. Celikbilek et al, J. Power Sources 333 (2016) 72-82

Celikbilek O., PhD Thesis 2016 Grenoble INP.

a = 19 μm⁻¹

Fabrication by ESD of advanced oxygen electrodes for SOFC

E. Djurado et al., Solid State Ionics 2016, 286, 102.

 $Ca_3Co_4O_{9+\delta}$

 $(La_{0.85}Sr_{0.15})_{0.95}MnO_{3-\delta} (LSM)$ Composite: LSM + YSZ

A. Princivalle, et al., Chemistry of Materials, 2005, 17, 1220...

R. Sharma, et al., Mater. Chem. A, 2016, 4, 12451.

1 - Sonochemistry for the synthesis of controlled nanostructured oxide powders: zirconia and ceria-based oxides

» Ultrasonic Spray Pyrolysis (USP) process – DOE

» CGO and TZP as electrolyte materials for IT-SOFCs

- » ZrO₂ based powders: morphology and phase transitions
- » Physico-chemical properties of CGO powders and sintering behavior

» USP advantages and disadvantages

2 – Electrostatic Spray Deposition for the design of dense and porous films

» Electrostatic Spray Deposition (ESD) process

» Optimization study of the ESD process to coat thin dense zirconia-based films

» Fundamental study of the formation of the ESD layer

» Advanced oxygen electrodes for SOC:

LSCF, CCO, LSM, LSM/YSZ, LPNO

» ESD advantages and disadvantages

ESD advantages and disadvantages

- Tailored morphology and composition
- Porosity control independently of grain size
- Good adhesion
- ✓ Simple and low cost process
- Deposition in air
- ✓ Large choice of precursors
- Low deposition temperature
- ✓ Good reproducibility
- ✓ Double injection (composite)
- ✓ Large number of dependent parameters
- Thermal treatment after deposition to get crystallization
- ✓ Interpenetration of layers

END Thank you for your attention Elisabeth.Djurado@lepmi.grenoble-inp.fr

The