

- I) Why and how to harvest energy from sun light
- II) Excitonic solar cells
- **III) Halid Perovskites for solar cells**

neel.cnrs.fr

Best Research-Cell Efficiencies

Properties and devices

Electronic structure

Electronic transport and quantum effects

Figure 1.1: Timeline of research over structure, synthesis and optoelectronic properties of hybrid halide perovskite and important discoveries in the improvement of the perovskite solar cell efficiency.

neel.cnrs.fr

Figure 2.1: Polyhedral representation of the crystal structure of $CH_3NH_3PbI_3$. The atoms are respectively: Pb (in grey) located at the center of each octahedron, I (in purple) at the corners of each octahedron, C (in light blue), N (in brown) and H (in pink). For $CH_3NH_3^+$ cations, a ball-and-stick model is used.

Figure 2.2: Polyhedral representation of the different polymorphs for the organic-inorganic halide perovskite CH₃NH₃PbI₃, depending on the temperature: (a) Orthorhombic (*Pnma*) structure stable for T < 162.2 K, (b) Tetragonal structure (I4/mcm) stable for $162.2 \leq T < 327.4$ K, (c) Cubic structure ($Pm\overline{3}m$) stable for $T \geq 327.4$ K. Atoms are represented as spheres: Pb are in grey and located at the center of each octahedron, I are in purple at the corners of each octahedron, C are in light blue, N are in brown, and H are in pink. For methylammonium cations, a ball-and-stick model is used.

Synthesis and stability : advantages and weaknesses

Easy process at low cost

But low resistance to moisture

Contains lead

Hysteresis problems...

Figure 2.3: Main deposition methods to prepare perovskite active layers: (a) One-step precursor deposition, (b) two-step sequential deposition method, (c) dual-source vapor deposition, and (d) vapor-assisted solution process [3].

Figure 2.4: Schematic of one-step and two step coating methods to deposit CH₃NH₃PbI₃ perovskite thin films. For the one-step procedure, a single precursor solution containing the lead halide PbI₂ and the methylammonium halide CH₃NH₃I is used. For the two-step coating method, the methylammonium iodide solution reacts with the initially spin-coated PbI₂ film. DMA refers to dimethylacetamide, DMF to dimethylformamide and IPA to isopropyl alcohol. [4]

neel.cnrs.1

Great electronic characteristics : Absorbance, gap, mobility, lifetime

Table 1. Band Gaps (E_g) for Select MHPs with Variable Chemistries and Dimensionality^{*a*}

compound	E_{g} (eV)	type	dimension
CH3NH3PbI3	1.61	direct	3D
$CH_3NH_3Pb(I_{1-x}Br_x)_3$	$\begin{array}{l} 1.57 \ (x = 0); \ 2.29 \\ (x = 1) \end{array}$		
CH3NH3PbCl3	2.88		
CH ₃ NH ₃ (Pb _{1-x} Sn _x)I ₃ ^b	1.55 (x = 0); 1.17(x = 0.5); 1.30(x = 1)		
$HC(NH_2)_2Pb(I_{1-x}Br_x)_3$	$\begin{array}{l} 1.48 \ (x = 0); \ 2.21 \\ (x = 1) \end{array}$		

Table 3. Measured Ranges for L_D and μ for Various Metal Halide Perovskites					
compound	sample type	$\mu \ (cm^2 \ V^{-1} \ s^{-1})$	L_D (μ m)	τ (ns)	
CH ₃ NH ₃ PbI ₃	thin film (solution)	1.4 ^b	0.13 ^b	4.5	
		0.9 ^e	0.09 ^c		
		0.66 ^b	0.13 ^b	9.6	
		0.43 ^c	0.11 ^c		
		8.2 ^{b,c}	1.2	67	
		12.5 ^b	-	-	
		7.5 ^c			
		2 ^b	2.3 ^b	1000 ^a	
		1 ^e	1.6 ^c		
		11 ^{b,c}	~ 1 ^{b,c}	~40	
		3.1 ^{b,c}	1.27 ^{b,c}	50	
		35 ^{b,c}	2.5 ^{b,c}	~70	
	PV device	-	~ 1 ^{b,c}	-	
		-	~ 1 ^{b,c}	-	
	pellet	66 ^b	-	-	
	single crystal	2.5 ^{6,c}	$2-8^{b,c}$	1032	
		67 ^{b,c}	9.7	570	
		250	175	90,000	
		160	h		
CH ₃ NH ₃ Pb(I _{1-x} Cl _x) ₃	thin film (solution)	1.6	1.07	273	
		2.1	1.21		
		11.60	2.4 ^{0,e}	200	
	thin film (vapor)	33	2.66	83	
	PV device	-	1,2"	-	
			1.9		
		-	, the	-	
CHANNER (P. CI.)	DV date	-	~ 1.4	-	
CH ₃ NH ₃ Pb(Br _{1-x} Cl _x) ₃ CH ₃ NH ₃ PbBr ₃	PV device	e ob	0.15-0.45	-	
	thin him (vapor assisted)	8.9 0.4 ^c	1.00	51	
	single crystal	9.4 20-115 ^{b,c}	3-17 ^b	357-079	
	surgie crystal	20-115	42	300	
CH-NH-PbCl-	single crustal	42 ^{b,c}	3-85 ^{b,c}	83-662	
CH(NH.).Ph.	thin film	0.16 ^b	0.18 ^b	~75	
011(14112/21/013	CITER THEFT	0.10	0.10	-13	

3.5°

27^{b,c}

thin film

CH(NH₂)₂PbBr₃

Low excitonic energy and unstable excitons at room temperature

neel.cnrs.fr

~140

~50

0.82

3.1

1.3

Direct X ray detection

Wei Wei¹⁺, Yang Zhang¹⁺, Qiang Xu², Haotong Wei¹, Yanjun Fang¹, Qi Wang¹, Yehao Deng¹, Tao Li³, NATURE PHOTONICS | VOL 11 | MAY 2017 | Alexei Gruverman³, Lei Cao² and Jinsong Huang¹⁺

5 OCTOBER 2017 | VOL 550 | NATURE | 87

Printable organometallic perovskite enables large-area, low-dose X-ray imaging

Yong Churl Kim¹, Kwang Hee Kim¹, Dae-Yong Son², Dong-Nyuk Jeong², Ja-Young Seo², Yeong Suk Choi¹, In Taek Han¹, Sang Yoon Lee¹ & Nam-Gyu Park²

FIG. 3. The electronic band structures of the inorganic perovskite CsPbBr3 and hybrid perovskite CH₃NH₃PbBr₃ in the cubic phase. An effect of the organic cation is to widen the bandgap located at the R point due to the larger lattice constant. Spin-orbit coupling reduces the bandgap in both materials. The presence of CH3NH3 in the hybrid perovskite results in a noncentrosymmetric crystal, with an associated relativistic Rashba-Dresselhaus splitting of the lower conduction band. While the labels of the special points are those of the cubic perovskite structure (space group Pm3m), the static model of the hybrid perovskite formally has P1 symmetry. Points equivalent for a cubic crystal (e.g., $M = \frac{1}{2}, \frac{1}{2}, 0; M' = 0, \frac{1}{2}, \frac{1}{2};$ $M'' = \frac{1}{2}, 0, \frac{1}{2}$) are inequivalent here.

ARPES measurements on MAPbI₃

K_x[Å⁻¹]

Cubic

MXM

J. Phys. D: Appl. Phys. 50 (2017) 26LT02

effective hole mass of $\sim 0.59m_0$

Cite this: Phys. Chem. Chem. Phys., 2017, 19, 5361

Tight-binding model

Charge transport, VEEL Mobility, mass, scattering time, mean-free path

- $\mu = e\tau/m$
- Mobility μ : 5-50 cm2/Vs
- Band effective mass m : 0.1-0.5 me
- Scattering time $\tau = \mu$ m/e is short of a few Femto seconds
- Mean-free path (room temperature) $I=0.5 \text{ nm } [m/0.2\text{me}]^{1/2}$ ($\mu/100 \text{ cm}^2/\text{Vs}$)
- Very short mean-free path comparable to the unit cell size
- Polaron hypothesis : m= 4-12 me. Larger mean-free path but still smaller than the polaron size (Rp= 2-3 nm)
- Semi-classical theory of transport seems not valid !

- Tight binding with first neighbor interaction only
- S and P orbitals of both iodine and lead are considered
- Orbital couplings computed *ab initio* (*Boyer-Richard et al. 2016*)
- The dipolar moment of the Ma molecule can generate disorder on the onsite energy of Pb and I
- The coupling between orbitals can also be disturbed due to disorder on atomic position
- Experimental basis for the intensity of the disorder (Lee *et al*. 2017)

Impact of different types of disorder

Density of states as a function of energy for the ordered system (blue) and with Anderson's disorder (orange) Density of states as a function of energy for the ordered system (blue), Orbital coupling disorder(orange), and position disorder (green)

Anderson's disorder is discarded as it fills the semiconductor gap of the material. Both disorders on orbital couplings and position maintain the value and position of the gap and will therefore be studied.

Three different types of diffusion

Electronic diffusivity as a function of time for a low disordered system (blue) and disordered system (orange)

disordered system (orange)

- Mobility in good agreement with experimental results for both models
- Computed mean free path : ~0,5 nm
- Mean free path smaller than the primitive cell
 - → Boltzmann's model requirements not respected
- Strong ratio classical µ/ computed µ at the top of the valence band
- Important localizations effect

- Mobility in good agreement with experimental results for both models
- Computed mean free path : ~0,5 nm
- Mean free path smaller than the primitive cell
 - → Boltzmann's model requirements not respected
- Strong ratio classical µ/ computed µ at the top of the valence band
- Important localizations effect

Physical principle of solar cells

19th December 2017

didier.mayou@neel.cnrs.fr

neel.cnrs.fr

VEEL Optical Thz conductivity and quantum diffusion

FIG. 2. (Color online) Time-dependent electron diffusivity D(t) extracted via Eq. (4) from the experimental optical conductivity of Ref. 16 in the direction of highest conduction. The absolute value is fixed by the measured mobility $\mu \simeq 7 \text{ cm}^2/Vs$. The inset shows the same quantity as a function of the instantaneous electron spread. The dashed line is the weak localization extrapolation.

 $\sigma(\omega) = -\frac{e^2 \omega^2}{\nu} \frac{\tanh(\beta \hbar \omega/2)}{\hbar \omega} \operatorname{Re} \int_0^\infty e^{i\omega t} \Delta X^2(t) dt.$

$$\Delta x^{2}(t) = \frac{2\hbar}{\pi e^{2}} \operatorname{Re} \int_{0}^{\infty} (1 - e^{-i\omega t}) \frac{\sigma(\omega)/n}{\omega \tanh(\beta \hbar \omega/2)} d\omega$$

Optical conductivity

- Shape of the curves show clear signs of non classicaleffects
- Both model consistent for the high energy limit
- Disorder based on position is the most coherent with the experimental results
- Maximum of conductivity:
 - ~8 meV

Optical conductivity

- Shape of the curves show clear signs of non classicaleffects
- Both model consistent for the high energy limit
- Disorder based on position is the most coherent with the experimental results
- Maximum of conductivity:
 - ~8 meV

- Remarkable combination of properties of halide perovskite (small recombination of charges , relatively good mobilities, easy synthesis...)
- Complex systems which basic physics is not so well understood : why small recombination, charge transport, role of organic molecules...

- P-n planar junction: mature technology. In particular silicon dominates the market.
- Perovskites look like a very promising PV solution with application in other domains of opto-electronic
- Excitonic solar cells with organic semi-conductors or dye solar cells attract less attention but...who knows ?
- Photo-synthesis mechanisms attract much attention and are a source of inspiration : artificial photo-synthesis, solar fuels